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Abstract: Comprehensive observations of total terrestrial water storage changes (TWSC) which include all the hydrological components
(such as snow/glacier, surface water, soil moisture, and groundwater) are rarely available, so the predisposition of a region to flood is not fully
clear. This paper combines the gravity recovery and climate experiment (GRACE) gravity observations, a hydrological model, and in-situ
hydrological station data to establish the relationship between Yangtze River discharge and TWSC by a time-lagged autoregressive model and
presents the TWSC data that apply for Yangtze River basin (YRB) flood forecasting. The TWSC in the YRB is inferred by the Lagrange
multiplier method from GRACE gravity observations between April 2002 and December 2013. The root-mean-square error (RMSE) is
optimal (2.1 cm) and the trend of TWSC in the YRB increased by 0.63 � 0.11 cm=year. A case study of the flood catastrophe during
summer 2010 is used to establish a relationship between river discharge from the Datong hydrological surveying station and basin water
storage changes from GRACE by adopting a time-lagged autoregressive model, which shows that the total water storage changes from
GRACE gravity observations can be used to estimate the tendency of a river basin to flood at 3–6 month lead times. This study concludes
the basin scale of total water storage changes determined from satellite observations of time-variable gravity provides a new and effective tool
for characterizing regional flood potential and may eventually lead to longer early flood warning times. DOI: 10.1061/(ASCE)HE.1943-
5584.0001547. © 2017 American Society of Civil Engineers.
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Introduction

In nonfreezing areas, runoff hydrological processes can be divided
into flow events, and show high regionalization in time and space
due to the transient responses of increases in precipitation. The
most fundamental signals of basic flow are the soil moisture and
ground water stored in a basin (Appleby 1970). Because of obser-
vational limitations, many methods are able to predict floods only
from the first flood phenomenon due to storms (Wetterhall et al.
2013; Guo et al. 2012). However, basic flow changes caused by
ground water and its impact on the flooding are usually ignored.
Therefore information such as precipitation forecasts, moisture
in a basin (such as the estimation of the surface soil moisture using
a model), and river levels are necessary in order to implement
hydrological simulations. These may limit the time scale of flood
forecasting ability relative to the weather forecast (3–10 days), or
there may be more possibilities in flood forecasting due to the pre-
cipitation distribution and hydrological model (Siccardi et al.
2005). Currently, because these methods cannot contain all of
the components of water storage, which is very important for
the improvement of the early forecasting of flood conditions in

basins, they limit the study of water resources. Because comprehen-
sive observations are rarely made for these elements, the possibility
of flooding occurring in basins remains unclear.

Only after the launch of the twin satellites of the gravity recov-
ery and climate experiment (GRACE) (Tapley et al. 2004) did com-
prehensive observations of total terrestrial water storage changes
(TWSC), which include snow/glacier, surface water, soil moisture,
groundwater, and so on, become possible. The total water storage
changes in large-scale areas can be obtained for each month by us-
ing the time-variable gravity field model provided by the GRACE
satellite mission (Tapley et al. 2004). The GRACE observations
not only can fill in the blanks of hydrological data but also can
study the characteristics of the water circulation (Syed et al. 2008;
Ramillien et al. 2008). Because the annual amplitude of water stor-
age signals in a large basin exceeds the error range of the GRACE
data, the GRACE data are very suitable for conducting limited stud-
ies of the hydrological process in a large catchment. In many areas,
these annual signals are the main elements of the changes in water
storage, and are consistent with the maximum water storage
(Crowley et al. 2006). However, when these annual signals are
larger than the maximum water storage, this can indicate flooding
(Reager and Famiglietti 2009; Reager et al. 2014).

At present, there are many methods for discharge prediction. Wu
et al. (2009) used moving average (MA), singular spectrum analy-
sis (SSA), and wavelet multiresolution analysis (WMRA), coupled
with an artificial neural network (ANN), to improve the estimate of
daily flows. Chau and Wu (2010) used a hybrid model integrating
ANNs and supported vector regression to develop daily rainfall
prediction. Chen et al. (2015) compared the population-based op-
timization algorithms for downstream river flow forecasting by a
hybrid neural network model. Gholami et al. (2015) combined den-
drochronology, hydrogeological analysis, and ANN modeling to
simulate groundwater level fluctuations during the past century.

1MOE Key Laboratory of Fundamental Physical Quantities Measure-
ment, School of Physics, Huazhong Univ. of Science and Technology,
Wuhan 430074, China; State Key Laboratory of Geodesy and Earth’s
Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of
Sciences, Wuhan 430077, China.

2Professor, School of Geodesy and Geomatics, Wuhan Univ., Wuhan
430079, China (corresponding author). E-mail: ztwang@whu.edu.cn

Note. This manuscript was submitted on December 16, 2016; approved
on March 20, 2017; published online on July 5, 2017. Discussion period
open until December 5, 2017; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Hydrologic
Engineering, © ASCE, ISSN 1084-0699.

© ASCE 05017016-1 J. Hydrol. Eng.

 J. Hydrol. Eng., 2017, 22(9): 05017016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
t S

tu
ttg

ar
t o

n 
12

/0
4/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001547
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001547
mailto:ztwang@whu.edu.cn


Taormina and Chau (2015) derived input variable selection for
rainfall–runoff modeling using binary-coded particle swarm optimi-
zation and extreme learning machines. Wang et al. (2015) improved
forecasting accuracy of annual runoff time series using the autore-
gressive integrated moving average (ARIMA) model based on the
ensemble empirical mode decomposition (EEMD); however, their
idea of flood potential referred to extreme water storage changes
which can increase runoff generation during future flood events sev-
eral months in advance, and is clearly different from the traditional
river flood forecasting (Reager et al. 2014, 2015).

Due to the insufficient spatial resolution (300–400 km) of the
GRACE data, the determined surface quality changes are spatial
smoothing rather than point measurements. Wahr et al. (1998) pro-
posed a smoothing method based on a simple Gaussian filter.
However, this method could not separate certain areas. In order
to estimate regional surface quality changes using the GRACE data,
corresponding technologies were required. Swenson and Wahr
(2002) proposed that a regional quality change method, which
reduces the impact of the GRACE observation errors, be utilized
when separating the gravity signal of each area. This method
mainly includes the following: (1) use of a Gaussian filter to
smooth the real averaging kernel; (2) the overall errors (satellite
measurement and signal leakage errors) are minimal; and
(3) use of a Lagrange multiplier method, which is able to give
the satellite errors in order to minimize the signal leakage errors
and is able to give the signal leakage errors in order to minimize
the satellite errors. Although a Gaussian filter can provide a simple
and intuitive way of creating an averaging kernel, it decreases
short-wavelength components and may not provide the most accu-
rate estimate of the basin average. Moreover, the minimizing of the
total error is used to determine an averaging kernel, which requires
prior information, and if these values are untrustworthy, the result-
ant averaging kernel may not correspond to the signal characteris-
tics (Swenson and Wahr 2002). Therefore this paper uses a
Lagrange multiplier method in which the fixed satellite measure-
ment error is used to minimize the signal leakage error to infer
the TWSC in the Yangtse River basin (YRB) from GRACE satellite
observations.

The TWSC can be determined from GRACE data, which have
made a significant contribution to the field of hydrology in estimat-
ing large basin river discharge (Syed et al. 2009; Riegger et al.
2012; Riegger and Tourian 2014; Sneeuw et al. 2014) and in
revealing large-scale groundwater depletion (Rodell et al. 2009;
Famiglietti et al. 2011). Furthermore, there was a capacity limita-
tion on using the water storage changes to estimate the regional
flooding from previous studies (Crowley et al. 2006; Reager and
Famiglietti 2009). This paper derives the total TWSC from monthly
mean terrestrial water storage in the YRB from GRACE satellite
observations by using a Lagrange multiplier method and then
presents a case study of the YRB’s flood in the summer of 2010.
The paper also establishes the relationship of TWSC changes with
river discharges provided by the Datong hydrological station
(Fig. 1) and uses a time-lagged autoregressive model to analyze
the possibility of flooding in the YRB, providing an earlier warning
of future flood conditions.

The main work and contribution in this paper is (1) devising the
Lagrange multiplier method to determine the TWSC in the YRB
from GRACE gravity observations between April 2002 and
December 2013; and (2) establishing the relationship between
Yangtze River discharge from in-situ Datong hydrological survey-
ing station river discharge and TWSC from GRACE by using a
time-lagged autoregressive model to characterize the flood poten-
tial in the YRB. This paper develops a new and effective tool for
characterizing regional flood potential and may ultimately result in
longer lead times in flood warnings.

Study Area

The Yangtze River (Changjiang), one of the longest rivers in the
world, originates from the Tuotuo River in the Tanggula Range
of the Qinghai-Tibet Plateau, traverses 11 provinces and cities from
west to east, and finally discharges in the East China Sea. The YRB
has an area of approximately 1.8 × 106 km2 which is approxi-
mately 20% of China’s total mainland. The YRB is located in
subtropical and temperate climate zones mainly affected by the
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Fig. 1. Topography of Yangtze River basin, the major rivers, and in-situ Datong hydrological control station
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southeast monsoon winds. The mean air temperature and average
annual precipitation are approximately 14°C and 1,100 mm, respec-
tively. Most of precipitation (76%) occurs from April to September
(Zhang et al. 2016).

The YRB is an important cultural and socioeconomic region
for China and plays an unusual role in ecological conservation.
However, it has suffered significant modification in climate and
land cover, including the largest hydroelectric power station in
the world—Three Gorges Dam (TGD). Climate change, extreme
events (floods and droughts), and irrigation have deeply influenced
water resources, thereby resulting in significant influences on natu-
ral and human systems. The YRB experienced three serious total-
basin disastrous floods in 1931, 1956, and 1998. Although such
similar catastrophic flooding has not occurred in the YRB since
the 21st century began, the YRB has experienced many medium
and small floods. For example, according to the statistics obtained
from the Office of State Flood Control and Drought Relief Head-
quarters, the flooding which occurred in June, July, and August
(JJA) of 2010 caused 28 provinces to suffer flood disaster condi-
tions and affected 9,418,000 ha of crops. The total population af-
fected by the flooding was 140 million, with a confirmed death toll
of 1,057, 615 missing persons, and 1,090,000 collapsed buildings.
The direct economic loss incurred was US$30,153,760,000.

Data Sets

This section presents the study area of the YRB and data sets
of discharge from in-situ Datong measurements, GRACE gravity
observations, and hydrological models [Global land data assimila-
tion system (GLDAS), Climate Prediction Center (CPC), and the
WaterGAP Global Hydrology Model (WGHM)].

In-Situ Datong Discharge of YRB

The Datong is the entire YRB control hydrological station, which is
located approximately 500 km from the mouth of the Yangtze River
and measures the contribution from an upstream area of approxi-
mately 1.7 × 106 km2 (Fig. 1). The daily average runoff (R), pre-
cipitation (P) and actual evapotranspiration (ETa) of the YRB
during 2002–2013, acquired from the Datong control hydrological
station, were used to determine the hydrological water storage
change (ΔSH) by the water balance method

ΔS|{z}
GRACE

↔ ΔSH ¼ P − R − ETa|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrology

ð1Þ

where ΔS|{z}
GRACE

is the water storage change from GRACE data.

GRACE

This paper used GRACE satellite data from the RL05 time-variable
gravity field model provided by Jet Propulsion Laboratory (JPL),
which included a total of 131 months (missing were June 2002,
July 2002, June 2003, January 2011, June 2011, May 2012,
October 2012, March 2013, August 2013, and September 2013)
from April 2002 to December 2013. The gravity field could not
be resolved in the case of GRACE satellite resonance, which there-
fore led to loss (Wagner et al. 2006). The GRACE monthly time-
variable gravity field models consist of a set of spherical harmonic
coefficients of the fully normalized external earth gravity field
(Heiskanen and Moritz 1967), (C̄lm, S̄lm), up to degree and order
60. The second-order term of the GRACE time-variable gravity
field model was replaced with the C20, determined with satellite
laser ranging (SLR) observation data (Cheng et al. 2011), the

degree 1 harmonic coefficients (Earth’s geocenter) were estimated
from Swenson et al. (2008), and correction for glacial isostatic ad-
justment (GIA) was applied following Geruo et al. (2013).

Hydrological Models

This paper used the following hydrological models to verify the
result of total water storage changes in the YRB from GRACE
satellite observation by using a Lagrange multiplier method.

GLDAS
The GLDAS constrains land surface states through the observation
data of the new-generation National Aeronautical and Spatial
Administration (NASA) surface and space observation system
(Rodell et al. 2004). The GLDAS produces optimal fields of land
surface states and fluxes in near real time by combining satellite
and ground-based observations into four land surface models.
The GLDAS provides land surface models with spatial resolutions
of 1 × 1° and 0.25 × 0.25°, and time resolutions of 1 month and 3 h.
This paper used the National Centers for Environmental Prediction/
Oregon State University/Air Force/Hydrologic Research Labora-
tory NOAH) model monthly soil moisture states in a 1 × 1° grid
to estimate the water storage in the top 2-m soil layer along with
the NOAH snowfield on the surface within the YRB.

CPC
The CPC at the National Oceanic and Atmospheric Administration
(NOAA), which uses observed precipitation and temperature to
create a hydrological model, has generated global monthly soil
moisture estimates at 0.5 × 0.5° resolution from 1948 to present
(Dool et al. 2003).

WGHM
WaterGAP, a global water resources and use model, consists of
the WGHM (Döll et al. 2003) and a number of water use models
for irrigation, livestock, manufacturing, cooling of thermal power
plants, and households. With a spatial resolution of 0.5 × 0.5° and a
daily time step, the time series of fast-surface and subsurface run-
off, groundwater recharge, river discharge, and water storage
changes in canopy, snow, soil, groundwater, lakes, reservoirs, wet-
lands, and rivers were simulated. Thus this model can quantify the
total water resources as well as the renewable groundwater resour-
ces of a grid cell, river basin, or country. This paper applied Water-
GAP version 2.2 (Müller et al. 2014) at a spatial resolution of
0.5° with global coverage in monthly time steps.

Method

This section introduces a Lagrangemultipliermethod to determine the
total terrestrial water storage changes in the YRB from GRACE
monthly solution, then establishes the relationship between river dis-
charge and TWSC soil moisture with a time-lagged autoregressive
model, which is used to analyze the possibility of flooding in the
YRBandprovide an earlierwarningof future floodconditions (Fig. 2).

Lagrange Multiplier Method

The Lagrange multiplier method not only can decrease the satellite
measurement errors but also can reduce the signal leakage errors in
order to determine regional water storage changes. Its essence is
that the ratio of the variance of error between the accurate average
kernel and the approximate average kernel to the accurate average
kernel is the lowest. Therefore this paper used a Lagrange multi-
plier method with minimum signal leakage error to determine the
changes of water storage in the YRB on the basis of the fixed
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satellite measurement error. Swenson and Wahr (2002) described
the method in detail. A brief description of the Lagrange multiplier
method in this paper follows.

Wahr et al. (1998) concluded that the relationship between the
local surface quality changes and the residual spherical harmonic is
as follows:

Δσðθ;ϕÞ ¼ aρE
3

X∞
l¼0

Xl

m¼0

ð2lþ 1Þ
ð1þ klÞ

~Plmðcos θÞfΔ ~Clm cosmϕ

þΔ ~Slm sinmϕg ð2Þ

where θ = colatitude; ϕ = geocenter longitude; a = semimajor axis
of the reference ellipsoid; ðl;mÞ = degree and order of the spherical
harmonic coefficient; ~Plm = fully normalized Legendre association
function (e.g., Heiskanen and Moritz 1967); ρE = average earth
density (5,517 kg=m3); kl = Love number (Farrell 1972); and
Δ ~Clm and Δ ~Slm = residual spherical harmonic coefficients, which
are obtained by removing the long-term mean of the Stokes coef-
ficients from each of the monthly values.

On the premise that the spatial resolution is reduced, use spatial
smoothing to improve the accuracy of the surface quality anomaly.
Then assume that the accurate average kernel ϑðθ;ϕÞ is the function
of the shape of the described area (river, ocean, ice sheet, political
border, and so on)

ϑðθ;ϕÞ ¼
�
0 outside the basin

1 inside the basin
ð3Þ

The vertical integration of water storage in any average area is

Δσregion ¼
1

Ωregion

Z
Δσðθ;ϕÞϑðθ;ϕÞdΩ ð4Þ

where dΩ ¼ sin θdθdϕ is the solid angle element; and ϑðθ;ϕÞ =
integration in the given spherical domain Ωregion (spherical area).
From the Eq. (4)

Δσregion ¼
aρE

3Ωregion

X∞
l¼0

Xl

m¼0

ð2lþ 1Þ
ð1þ klÞ

ðϑc
lmΔClm þ ϑs

lmΔSlmÞ ð5Þ

where ϑc
lm and ϑs

lm = spherical harmonic coefficients of ϑðθ;ϕÞ

ϑðθ;ϕÞ ¼ 1

4π

X∞
l¼0

Xl

m¼0

~Plmðcos θÞfϑc
lm cosmϕþ ϑs

lm sinmϕg ð6Þ

�ϑc
lm

ϑs
lm

�
¼

Z
ϑðθ;ϕÞ ~Plmðcos θÞ

�
cosmϕ

sinmϕ

�
dΩ ð7Þ

Replacing the accurate average kernel ϑðθ;ϕÞ in the approxi-
mate expression area of equation with W̄ðθ;ϕÞ gives

fΔσregion ¼
1

Ωregion

Z
Δσðθ;ϕÞW̄ðθ;ϕÞdΩ ð8Þ

where fΔσregion = approximate areal average; and W̄ can be
expanded to obtain the following:

W̄ðθ;ϕÞ ¼ 1

4π

Xltrnc
l¼0

Xl

m¼0

~Plmðcos θÞfWc
lm cosmϕþWs

lm sinmϕg

ð9Þ

The approximate areal average can be approximately expressed
by using the Stokes coefficient

fΔσregion ¼
X
l;m

Kl

Ωregion
ðWc

lmΔClm þWs
lmΔSlmÞ ð10Þ

where Kl ¼ ðaρE=3Þ½ð2lþ 1Þ=ð1þ klÞ�.
The variance of the corresponding satellite measurement error is

varðεsatÞ ¼
1

Ω2
region

X
l;m

K2
l B

2
l

2lþ 1
½Wc2

lm þWs2
lm� ð11Þ

where B2
l ¼ 1

n

P
n
i¼1

P
l
m¼0f½ΔδclmðtiÞ�2 þ ½ΔδslmðtiÞ�2g.

A Lagrange multiplier method can be used to obtain the average
kernel with the minimum limited satellite measurement error and
signal leakage error not based on any prior information. Define a
type of signal leakage as the ratio of the variance of accurate and
approximate average kernel difference to the variance of the accu-
rate average kernel

varðεlkgÞ ¼
R ½W̄ðθ;ϕÞ − ϑðθ;ϕÞ�2dΩR ½ϑðθ;ϕÞ�2dΩ

¼ 1

4πΩregion

X
l;m

½ðWc
lm − ϑc

lmÞ2 þ ðWs
lm − ϑs

lmÞ2� ð12Þ

Let δ2 be the variance of satellite measurement error, and Δ2 ¼
δ2Ω2

region be the Lagrange multiplier multiplied by λ;Wc
lm,W

s
lm, and

λ then can be determined through the minimum value of Eq. (13)

GRACE monthly 

solution 

Lagrange multiplier 

method 

Water storage 

change in the YRB Soil moisture

GLDAS

River discharge 

Datong

Time-lagged autoregressive model

River discharge from predicting

Training period from January 2003 to December 2009 

Forecasting period from January 2010 to December 2010 

The flood potential of Yangtze River basin

Taking the Yangtze River basin’s flood in the summer of 2010 as an example

Fig. 2. Flowchart of the entire procedure
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ξ ¼
X
l;m

½ðWc
lm − ϑc

lmÞ2 þ ðWs
lm − ϑs

lmÞ�2

þ λ

�X
l;m

K2
l B

2
l

2lþ 1
½Wc2

lm þWs2
lm� −Δ2

�
ð13Þ

Eq. (13) ignores 4πΩregion, which is considered in λ. Seek the
partial derivative of Wclm and Wslm of ξ and let them be zero to
obtain �Wc

lm

Ws
lm

�
¼

�
1þ λ

K2
l B

2
l

2lþ 1

�−1�ϑc
lm

ϑs
lm

�
ð14Þ

Seek the partial derivative of λ of ξ and let it be zero to obtain the
satellite measurement error equivalent to Δ2

X
l;m

K2
l B

2
l

2lþ 1
½Wc2

lm þWs2
lm� ¼ Δ2 ð15Þ

Through the combined Eq. (14)

X
l;m

K2
l B

2
l

2lþ 1

ϑc2
lm þ ϑs2

lmh
1þ λ

K2
l B

2
l

2lþ1

i
2
¼ Δ2 ð16Þ

When λ is obtained through Eq. (16), use it in Eq. (14) to obtain
Wc

lm and Ws
lm, then use them in Eq. (10) to infer the water storage

change. This is the Lagrange multiplier method which uses the
fixed satellite measurement error to minimize the signal leakage
error.

The water storage change ½Δhðθ;ϕ; tiÞ� of the YRB was fit by
(Chao et al. 2016)

Δhðθ;ϕ; tiÞ ¼ a0 þ a1ðti − t0Þ þ a2ðti − t0Þ2

þ
X4
k¼1

½Ak cosð2πfktiÞ þ Bk sinð2πfktiÞ� ð17Þ

where ti = time epoch; fkðk ¼ 1; : : : ; 4Þ are the signal frequencies
of the trend, acceleration signals (Ogawa et al. 2011), annual and
semiannual seasonal signals, and S2 tidal alias (cycle: 161 days)
and K2 tidal alias (cycle: 3.73 years) (Chen et al. 2009), respec-
tively; Ak and Bk = signal amplitudes; a1 = trend value; and
a2 = acceleration. The t0 value was the middle moment of the cal-
culation cycle.

Time-Lagged Autoregressive Model

The model framework was used to illustrate the ability of GRACE
observations to estimate the flood potential by adopting the time-
lagged autoregressive model from Reager et al. (2014).

The basic autoregressive model includes two terms as a function
of river discharge at a previous time for forecasting river discharge

QðtÞ ¼ x1 · Qðt − τÞ þ x2 · Qðt − 12Þ ð18Þ

whereQ = river discharge at the time t; τ = lead time in months and
the second term is the discharge in the same month of the previous
year (because river discharge has strong seasonal characteristics);
and x1 and x2 are constants.

The third term representing one of two potential regional flood
predictors is

QðtÞ ¼ x1 · Qðt − τÞ þ x2 · Qðt − 12Þ þ y1 · Soilðt − τÞ ð19Þ

QðtÞ ¼ x1 · Qðt − τÞ þ x2 · Qðt − 12Þ þ y2 · TWSCðt − τÞ
ð20Þ

Soil refers to the time series of soil moisture provided by the
GLDAS model, TWSC is the time series of the total TWSC, and
y1 and y2 are constants. A regression model is used to estimate the
overall prediction time so that each point of the forecast time series
is calculated through the time τ before its occurrence.

There are two metrics for the performance of autoregressive
model (Reager et al. 2014): (1) the ability of the model to rec-
ognize a potential high discharge event is described by the fore-
cast of a river discharge larger than the historic (2000–2013) 99th
percentile for monthly discharge during the prediction period
(54,664.4516 m3=s for the data record of Datong); and (2) the
model accuracy is described by the maximum absolute value
error, the mean absolute value error (MAE), mean bias, and
mean percentage relative error (MPRE) between model and
observations.

Taking the flood of JJA 2010 in the YRB as an example, this
paper divided the time series into the following: (1) training period
from January 2003 to December 2009; and (2) forecast period from
January 2010 to December 2010. The lead time τ was 1–12 months.
This paper used a least-squares linear regression during the training
period to solve the model coefficients, and then applied them to
prediction during the forecast period.

Results

Comparison of GRACE and Hydrological Data in YRB

This paper determined the total water storage changes of YRB
during 2002–2013 from data from the Center for Space Research
(CSR), GeoForschungsZentrum Potsdam (GFZ), and Jet Propul-
sion Laboratory (JPL) through the Groupe de Recherche de
Géodésie Spatiale (GRGS). The calculation of total water storage
change adopted a DDK5 filtering (Kusche et al. 2009; Chao
et al. 2016), Lagrange multiplier method, and the hydrological
water storage change from Datong hydrological station through
Eq. (1).

Fig. 3 shows the time series of GRACE-based TWSC and ter-
restrial water storage anomalies from different hydrological data
spatially averaged over the YRB. The figure compares time series
data from the four GRACE data sets and shows the distinctive sea-
sonal variations with the minimumwater storage usually found dur-
ing the months of October–November and the maximum during the
months of April–May.

As shown in Fig. 3, TWSC were estimated from different
GRACE products, and the hydrological data were basically consis-
tent with each other. However, because the method of gravity sol-
ution and the postprocessing of GRACE Level 2 data (Bettadpur
2012) were different, the results of water storage change were not
fully consistent. Moreover, the water storage change in the YRB
showed an increasing trend, with an annual observed increase rate
of 0.63� 0.11 cm=year. The water storage change increased con-
stantly since 2007.

In addition, this paper investigated statistics of water storage
change from different GRACE and hydrology products with in-situ
data from the Datong hydrological station (Fig. 4), which showed
that the mean, RMSE, R-square, and P-value were basically con-
sistent with each other, but the mean and RMSE were smallest and
the R-square was the largest from the Lagrange multiplier method.
Therefore the results of water storage change in the YRB from the
Lagrange multiplier method were optimal.
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YRB Flood, 2010

Flooding in the YRB often occurs in the summer, so this paper used
the relationship between TWSC and river discharge (T-D) in the
mean of JJA during 2003–2013 (Fig. 5), mainly because the flow
in the summer would not be impacted by the freezing of ice and
snow. As shown in Fig. 5, the T-D relationship in the summer can
be fitted by a least-squares exponent regression. Moreover, when
the T-D relationship approached the regression line (i.e., high flow
corresponding with high TWSC), it indicated local saturated river
discharge, which was similar to the event of saturation exceeding
the discharge. During these saturation-driving events, the river ba-
sin discharges its large area of storage water into the watercourse
and its surrounding plain in order to release its saturation state.
Therefore as time goes on, the TWSC and river discharge increase,
so large-area flooding will occur at this time, as happened in
2010 (Fig. 5).

This paper used the YRB’s flood in the summer of 2010 as an
example and used a simple time-lagged autoregressive model to
establish the relationship between river discharge and the total
water storage changes from GRACE and compared this with basin
observations from traditional operational measures such as soil
moisture.

Fig. 6 shows the changes in the model-forecast discharge within
the lead time from January to December. The results show that
the compliance between the model-forecast discharge changes and
the actual situation gradually decreased with the increase of the lead
time. Over lead times from 1 to 12 months, the forecast of river
discharge using three-term autoregressive model with added
TWSC was closest to the actual situation when compared with
the Soil three-term autoregressive model and the basic two-term
autoregressive model. When the lead time was 1–6 months, the
result of the forecast of river discharge from the Soil three-
term autoregressive model was better than that of the basic two-term
autoregressive model, but beyond 6 months, the basic two-term
autoregressive model outperformed the Soil three-term autoregres-
sive model. In particular, when the lead time exceeded 6 months,
the maximum value of the model-forecast discharge changes
decreased quickly.

Fig. 7 shows the properties of the lead time regression model as
follows: Fig. 7(a) illustrates the relationship between the maximum
flow during the forecast period and the lead time (1–12 months);
the dashed line represents the 99th percentile value; Figs. 7(b-e)

show the relationship between the forecast period and the maxi-
mum absolute value error, MAE, mean, and MPRE, respectively.

The three-term autoregressive model with the soil moisture data
improved the MAE from 2-month to 7-month lead times compared
with the basic two-term model (Fig. 7). However, it cannot forecast
exceptional river discharge from 2 to 3 months before the event. In
the trinomial regression model after adding TWSC, the maximum
flow increased and the maximum value in all the lead times was the
largest. Compared with the other data, only the single TWSCmodel
had the response ability for extreme events with 2–3 months lead
time (99th percentile larger than the historical data). When the lead
time was 3–6 months, the forecasted river basin of the GRACE
TWSC model approached but did not exceed the 99th percentile,
which indicates that it has the potential to forecast the flood con-
ditions in advance. Moreover, the maximum absolute value error
and MAE with the addition of GRACE data were smaller than
for any other tested data, and the mean bias and MPRE with
GRACE data were the smallest in the whole prediction period,
which shows that the GRACE data can improve the accuracy
of the time-lagged autoregressive model. However, the accuracy
decreased when the lead time was 1 month, as a result of early
warning (overprediction).

Conclusions and Discussion

The major flooding which occurs in river basins requires high water
storage and heavy rainfall. The aggravation of ice and snow melt-
ing, increases in frozen soil, increases in water levels, and so on,
will lead to increases in river discharge, which thereby cause flood-
ing. However, in addition to the contribution of these factors to
the runoff in river basins, high-flow events can be observed by
the GRACE mission. Comparing the traditional measurements, this
paper showed that the basin-scale estimate of water storage changes
inferred from GRACE satellite observations of time-variable grav-
ity can characterize regional flood potential and ultimately result in
longer lead times in flood warnings. Therefore it was shown to be
an effective tool. However, earlier forecasting of flood conditions in
river basins will require accurate and complete hydrological state
information.

The primary aim of this work is not to design the best perfor-
mance and optimal prediction model. Rather, it is the use of infor-
mation in the GRACE-based total water storage changes from the
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Fig. 5. Relationship between TWSC and river discharge for the mean of summer (June, July, and August) during 2003–2013 in Yangtze River basin

© ASCE 05017016-7 J. Hydrol. Eng.

 J. Hydrol. Eng., 2017, 22(9): 05017016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
t S

tu
ttg

ar
t o

n 
12

/0
4/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



D
at

on
g 

R
iv

er
 d

is
ch

ar
ge

 (
m

3  s
−1

)

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

Q
Soil
TWSC
OBS

1 month 2 months

shtnom4

5 months 6 months

shtnom8shtnom7

9 months 10 months

11 months 12 months

Year
2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0 2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0 2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0 2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0 2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

2010.0 2010.2 2010.4 2010.6 2010.8 2011.0 2010.0 2010.2 2010.4 2010.6 2010.8 2011.0

Year

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

10000

20000

30000

40000

50000

60000

70000

Year

Fig. 6. Autoregressive model results for increasing lead times from 1 to 12 months; OBS is the actual river discharge observations from Datong,Q is
the predicted river discharge from Eq. (18), Soil represents the predicted river discharge from Eq. (19) when the soil moisture data are included,
TWSC represents the predicted river discharge from Eq. (20) when the total TWSC are included

© ASCE 05017016-8 J. Hydrol. Eng.

 J. Hydrol. Eng., 2017, 22(9): 05017016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
t S

tu
ttg

ar
t o

n 
12

/0
4/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Lagrange multiplier method to assess several months in advance the
predisposition of a river basin to flooding. The authors hope that
this work can be applied to regional flood forecasting. The GRACE
observations can be best implemented for a flood prediction tool in
a case of regional-scale saturation and the accumulation of storage
in subsurface basin, such as the entire YRB. Therefore this work
takes into account the spatial discrepancy of the YRB, which is
divided into 11 subbasins (Jinsha River, Min River, Jialing River,
Han River, Upper YRB,Middle YRB, Lower YRB,WuRiver, Doting
Lake, Poyang Lake, and Tai Lake) to study the flood potential.

In addition, the GRACE observational results and precipitation
data can be combined to establish flood factors for the purpose of
regional flood monitoring. Therefore, GRACE satellite observatio-
nal results play an important role in flood monitoring and provide
new technological means for the monitoring of flood conditions.
With the accumulation of satellite gravity and hydrometeorology
data as well as the gradual completeness of hydrological modeling,
conditions will become more favorable for the separation and
extraction of geophysics signals from satellite gravity-observation
results. Moreover, this data not only can provide reliable geophys-
ics information for studying the Earth’s solid-matter migration and
for refining and verifying global and local hydrological models, but
also can forecast major disaster events, such as drought, floods,
debris flow, earthquakes, and so on.
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